

0

Closed Loop Design, LLC

support@cld-llc.com

Vendor Defined Bulk IN/Bulk OUT Library
for Analog Devices ADSP-BF70x

User’s Guide Revision 2.00

1

Table of Contents
Disclaimer ... 3

Introduction ... 3

USB Background .. 3

CLD BF70x Bulk Library USB Enumeration Flow Chart .. 4

CLD BF70x Bulk Library Bulk OUT Flow Chart .. 6

CLD BF70x Bulk Library Bulk IN Flow Chart .. 7

Dependencies .. 8

Memory Footprint ... 8

CLD BF70x Bulk Library Scope and Intended Use ... 8

CLD Bulk Loopback Example v2.0 Description .. 8

CLD BF70x Bulk Library API ... 9

cld_bf70x_bulk_lib_init .. 9

cld_bf70x_bulk_lib_main ... 14

cld_bf70x_bulk_lib_transmit_bulk_in_data ... 15

cld_bf70x_bulk_lib_resume_paused_bulk_out_transfer .. 16

cld_ lib_usb_connect .. 18

cld_ lib_usb_disconnect .. 18

cld_time_125us_tick ... 19

cld_usb_isr_callback ... 19

cld_console_tx_isr_callback ... 20

cld_console_rx_isr_callback ... 20

cld_time_get .. 21

cld_time_passed_ms ... 21

cld_time_get_125us .. 22

cld_time_passed_125us .. 22

cld_console ... 23

cld_lib_status_decode ... 24

Using the ADSP-BF707 Ez-Board ... 25

Connections: ... 25

Note about using UART0 and the FTDI USB to Serial Converter ... 25

Adding the CLD BF70x Bulk Library to an Existing CrossCore Embedded Studio Project 26

Using ADI hostapp.exe ... 28

2

ADI hostapp Windows USB Driver Installation ... 29

User Firmware Code Snippets .. 33

main.c .. 33

user_bulk.c .. 34

3

Disclaimer
This software is supplied "AS IS" without any warranties, express, implied or statutory, including but not

limited to the implied warranties of fitness for purpose, satisfactory quality and non-infringement. Closed

Loop Design LLC extends you a royalty-free right to reproduce and distribute executable files created

using this software for use on Analog Devices Blackfin family processors only. Nothing else gives you

the right to use this software.

Introduction

The Closed Loop Design (CLD) Bulk library creates a simplified interface for developing a Bulk IN/Bulk

OUT USB 2.0 device using the Analog Devices ADSP-BF707 EZ-Board. The CLD BF70x Bulk library

also includes support for a serial console and timer functions that facilitate creating timed events quickly

and easily. The library's BF707 application interface is comprised of parameters used to customize the

library's functionality as well as callback functions used to notify the User application of events. These

parameters and functions are described in greater detail in the CLD BF70x Bulk Library API section of

this document.

USB Background

The following is a very basic overview of some of the USB concepts that are necessary to use the CLD

BF70x Bulk Library. However, it is still recommended that developers have at least a basic

understanding of the USB 2.0 protocol. The following are some resources to refer to when working with

USB:

• The USB 2.0 Specification: http://www.usb.org/developers/docs/usb20_docs/

• USB in a Nutshell: A free online wiki that explains USB concepts.

http://www.beyondlogic.org/usbnutshell/usb1.shtml

• "USB Complete" by Jan Axelson ISBN: 1931448086

USB is a polling based protocol where the Host initiates all transfers, so all USB terminology is from the

Host's perspective. For example, an 'IN' transfer is when data is sent from a Device to the Host, and an

'OUT' transfer is when the Host sends data to a Device.

The USB 2.0 protocol defines a basic framework that devices must implement in order to work correctly.

This framework is defined in the Chapter 9 of the USB 2.0 protocol, and is often referred to as the USB

'Chapter 9' functionality. Part of the Chapter 9 framework is standard USB requests that a USB Host uses

to control the Device. Another part of the Chapter 9 framework is the USB Descriptors. These USB

Descriptors are used to notify the Host of the Device's capabilities when the Device is attached. The USB

Host uses the descriptors and the Chapter 9 standard requests to configure the Device. This process is

called the USB Enumeration. The CLD BF70x Bulk Library includes support for the USB standard

requests and USB Enumeration using some of the parameters specified by the User application when

initializing the library. These parameters are discussed in the cld_bf70x_bulk_lib_init section of this

document. The CLD BF70x Bulk Library facilitates USB enumeration and is Chapter 9 compliant

without User Application intervention as shown in the flow chart below. If you'd like additional

information on USB Chapter 9 functionality or USB Enumeration please refer to one of the USB

resources listed above.

http://www.beyondlogic.org/usbnutshell/usb1.shtml

4

CLD BF70x Bulk Library USB Enumeration Flow Chart

USB/External Event

CLD Bulk Library Firmware

User Firmware

USB Cable Connected or USB Bus Reset

Get Device Descriptor Request

Device Descriptor returned by Device with Vendor ID and

Product ID specified by the User Firmware

Set USB Address

USB Host Event

Set Blackfin’s USB Address

Get Configuration Descriptor Request

Configuration Descriptor retuned by the Device

Set Configuration

(CLD Bulk Library has 1 configuration)

Configures the Device

(Bulk IN and Bulk OUT endpoints configured and enabled)

Request String Descriptors

Return USB String Descriptors defined by the User

Firmware

Get Device Descriptor Request

Device Descriptor returned by Device with Vendor ID and

Product ID specified by the User Firmware

U
S

B
 E

n
u

m
e

ra
ti
o

n

All USB data is transferred using Endpoints that act as a source or sink for data based on the endpoint's

direction (IN or OUT). The USB protocol defines four types of Endpoints, each of which has unique

characteristics that dictate how they are used. The four Endpoint types are: Control, Interrupt, Bulk and

Isochronous. Data that is transmitted over USB is broken up into blocks of data called packets. For each

endpoint type there are restrictions on the allowed max packet size. The allowed max packet sizes also

vary based on the USB connection speed. Please refer to the USB 2.0 protocol for more information

about the max packet size supported by the four endpoint types.

5

The CLD BF70x Bulk Library uses Control and Bulk endpoints, these endpoint types will be discussed in

more detail below.

A Control Endpoint is the only bi-directional endpoint type, and is typically used for command and status

transfers. A Control Endpoint transfer is made up of three stages (Setup Stage, Data Stage and Status

Stage). The Setup Stage sets the direction and size of the optional Data Stage. The Data Stage is where

any data is transferred between the Host and Device. The Status Stage gives the Device the opportunity to

report if an error was detected during the transfer. All USB Devices are required to include a default

Control Endpoint at endpoint number 0, referred to as Endpoint 0. Endpoint 0 is used to implement all

the USB Protocol defined Chapter 9 framework and USB Enumeration. In the CLD BF70x Bulk Library

Endpoint 0 is only used for USB Chapter 9 requests, which are handled by the CLD BF70x Bulk library,

thus Endpoint 0 is not accessible by the User application.

Bulk Endpoints are used to transfer large amounts of data where data integrity is critical, but does not

require deterministic timing. A characteristic of Bulk Endpoints is that they can fill USB bandwidth that

isn't used by the other endpoint types. This makes Bulk the lowest priority endpoint type, but it can also

be the fastest as long as the other endpoints don't saturate the USB Bus. An example of a devices that

uses Bulk endpoints is a Mass Storage Device (thumb drives). The CLD BF70x Bulk Library includes a

Bulk IN and Bulk OUT endpoint, which are used to send and receive data with the USB Host,

respectively.

The flow charts below give an overview of how the CLD BF70x Bulk Library and the User firmware

interact to process Bulk OUT and Bulk IN transfers. Additionally, the User firmware code snippets

included at the end of this document provide a basic framework for implementing a Bulk IN/Bulk Out

device using the CLD BF70x Bulk Library.

6

CLD BF70x Bulk Library Bulk OUT Flow Chart

Bulk OUT packet

Call User specified bulk_out_data_received function with

p_transfer_params->num_bytes = number of received Bulk

OUT bytes

Set the p_transfer_params parameters to describe the

expected Bulk OUT transfer

• num_bytes = the size of the Bulk OUT transfer

• p_data_buffer =address of buffer to store num_bytes

of data

• usb_out_transfer_complete = function to call when the

requested number of bytes is received

• transfer_aborted_callback = function to call if the

transfer is terminated.

Return CLD_USB_TRANSFER_ACCEPT

Unload the Bulk OUT packet from the Blackfin’s endpoint

FIFO to p_transfer_params->p_data_buffer

Requested p_transfer_prams->num_bytes

received?

Call User specified

p_transfer_params->usb_out_transfer_complete function

Exit Bulk OUT Rx ISR, and Wait for next Bulk Out packet

Rx Interrupt

Bulk Out Rx Interrupt

Return CLD_USB_DATA_GOOD if the received Bulk OUT

data is valid, or CLD_USB_DATA_BAD_STALL to stall the

Bulk OUT endpoint.

Exit Bulk OUT Rx ISR

Yes

No

USB/External Event

CLD Bulk Library Firmware

User Firmware

USB Host Event

7

CLD BF70x Bulk Library Bulk IN Flow Chart

Load the next the Bulk IN packet into the Blackfin’s

endpoint FIFO
Requested p_transfer_prams->num_bytes

transmitted?

Call the User specified usb_in_transfer_complete function

Create a CLD_USB_Transfer_Params variable (called

transfer_params in this flow chart)

transfer_params parameters to describe the requested Bulk

IN transfer

• num_bytes = the size of the Bulk IN transfer

• p_data_buffer = address of buffer that has num_bytes

of data to send to the Host

• usb_in_transfer_complete = function called when the

requested number of bytes has been transmitted

• transfer_aborted_callback = function to call if the

transfer is terminated.

Call cld_bulk_lib_transmit_bulk_in_data passing a pointer

to transfer_params

Initialize the first packet of the Bulk IN transfer using the

User specified transfer_params.

Bulk IN token

Bulk IN Interrupt

Exit Bulk IN Interrupt and wait for next Bulk IN Token

No

Yes

Wait for the USB Host to issue a USB IN Token on the Bulk

IN endpoint

USB/External Event

CLD Bulk Library Firmware

User Firmware

USB Host Event

Exit Bulk IN Interrupt

usb_in_transfer_complete

8

Dependencies

In order to function properly the CLD BF70x Bulk Library requires the following Blackfin resources:

• 24Mhz clock input connected to the Blackfin USB0_CLKIN pin.

• Optionally the CLD BF70x Bulk Library can use one of the Blackfin UARTs to implement a

serial console interface.

• The User firmware is responsible for setting up the Blackfin clocks, as well as enabling the

Blackfin's System Event Controller (SEC) and configuring SEC Core Interface (SCI) interrupts to

be sent to the Blackfin core.

Memory Footprint

The CLD BF70x Bulk Library approximate memory footprint is as follows:

Code memory: 23708 bytes

Data memory: 5060 bytes

Total: 28768 bytes or 28.09k

Heap memory: 1152 bytes (only malloc'ed if optional cld_console is enabled)

Note: The CLD BF70x Bulk Library is currently optimized for speed (not space).

CLD BF70x Bulk Library Scope and Intended Use

The CLD BF70x Bulk Library implements a Vendor Specific Bulk IN/Bulk OUT USB device, as well as

providing time measurements and optional bi-directional UART console functionality. The CLD BF70x

Bulk Library is designed to be added to an existing User project, and as such only includes the

functionality needed to implement the above mentioned USB, and UART console features. All other

aspects of Blackfin processor configuration must be implemented by the User code.

CLD Bulk Loopback Example v2.0 Description

The CLD_Bulk_loopback_example_v2_0 project provided with the CLD BF70x Bulk Library

implements the Analog Devices (ADI) vendor specific Bulk IN/Bulk OUT protocol used by the ADI

hostapp.exe program included with CrossCore Embedded Studio. This example is not indented to be a

used as a complete standalone project. Instead, this project only includes the User functionality required

to interface with hostapp.exe, and it is up to the User to include their own custom system initialization

and any extra functionality they require.

For information about running the ADI hostapp program please refer to the "Using ADI hostapp.exe"

section of this Users Guide.

9

CLD BF70x Bulk Library API

The following CLD library API descriptions include callback functions that are called by the library

based on USB events. The following color code is used to identify if the callback function is called from

the USB interrupt service routine, or from mainline. The callback functions called from the USB

interrupt service routine are also italicized so they can be identified when printed in black and white.

Callback called from the mainline context

Callback called from the USB interrupt service routine

cld_bf70x_bulk_lib_init

CLD_RV cld_bf70x_bulk_lib_init (CLD_BF70x_Bulk_Lib_Init_Params *

cld_bulk_lib_params)

Initialize the CLD BF70x Bulk Library.

Arguments

cld_bulk_lib_params Pointer to a CLD_BF70x_Bulk_Lib_Init_Params

structure that has been initialized with the User

Application specific data.

Return Value

This function returns the CLD_RV type which represents the status of the CLD BF70x Bulk initialization

process. The CLD_RV type has the following values:

CLD_SUCCESS The library was initialized successfully
CLD_FAIL There was a problem initializing the library
CLD_ONGOING The library initialization is being processed

Details

The cld_bf70x_bulk_lib_init function is called as part of the device initialization and must be repeatedly

called until the function returns CLD_SUCCESS or CLD_FAIL. If CLD_FAIL is returned the library

will output an error message identifying the cause of the failure using the cld_console UART if enabled

by the User application. Once the library has been initialized successfully the main program loop can

start.

The CLD_BF70x_Bulk_Lib_Init_Params structure is described below:

typedef struct

{

 CLD_Uart_Num uart_num;

 unsigned long uart_baud;

 unsigned long sclk0;

 void (*fp_console_rx_byte) (unsigned char byte);

 unsigned short vendor_id;

10

 unsigned short product_id;

 CLD_Bulk_Endpoint_Params * p_bulk_in_endpoint_params;

 CLD_Bulk_Endpoint_Params * p_bulk_out_endpoint_params;

 CLD_USB_Transfer_Request_Return_Type (*fp_bulk_out_data_received)

 (CLD_USB_Transfer_Params * p_transfer_data);

 unsigned char usb_bus_max_power;

 unsigned short device_descriptor_bcdDevice;

 const char * p_usb_string_manufacturer;

 const char * p_usb_string_product;

 const char * p_usb_string_serial_number;

 const char * p_usb_string_configuration;

 const char * p_usb_string_interface;

 unsigned short usb_string_language_id;

 void (*fp_cld_usb_event_callback) (CLD_USB_Event event);

 void (*fp_cld_lib_status) (unsigned short status_code,

 void * p_additional_data,

 unsigned short additional_data_size);

} CLD_BF70x_Bulk_Lib_Init_Params;

A description of the CLD_BF70x_Bulk_Lib_Init_Params structure elements is included below:

Structure Element Description

uart_num Identifies which of the ADSP-BF707 UARTs should be used by the

CLD BF70x Bulk Library to implement the cld_console (refer to

the cld_console API description for additional information). The

valid uart_num values are listed below:

CLD_UART_0

CLD_UART_1

CLD_UART_DISABLE

If uart_num is set to CLD_UART_ DISABLE the CLD BF70x

Bulk Library will not use a UART, and the cld_console

functionality is disabled.

uart_baud Sets the desired UART baud rate used for the cld_console.

The remaining cld_console UART parameters are as follows:

Number of data bits: 8

Number of stop bits: 1

No Parity

No Hardware Flow Control

sclk0 Used to tell the CLD BF70x Bulk Library the frequency of the

ADSP_BF707 SCLK0 clock.

fp_console_rx_byte Pointer to the function that is called when a byte is received by the

cld_console UART. This function has a single parameter ('byte')

which is the value received by the UART.

11

Note: Set to NULL if not required by application

vendor_id The 16-bit USB vendor ID that is returned to the USB Host in the

USB Device Descriptor.

USB Vendor ID's are assigned by the USB-IF and can be purchased

through their website (www.usb.org).

product_id The 16-bit product ID that is returned to the USB Host in the USB

Device Descriptor.

p_bulk_in_endpoint_params Pointer to a CLD_Bulk_Endpoint_Params structure that describes

how the Bulk IN endpoint should be configured. The

CLD_Bulk_Endpoint_Params structure contains the following

elements:

Structure Element Description

endpoint_num Sets the USB endpoint number

of the Bulk endpoint. The

endpoint number must be

within the following range:

1 ≤ endpoint_num ≤ 12. Any

other endpoint number will

result in the

cld_bf70x_bulk_lib_init

function returning CLD_FAIL

max_packet_size_full_speed Sets the Bulk endpoint's max

packet size when operating at

Full Speed. The valid Bulk

endpoint max packet sizes are

as follows:

8, 16, 32, and 64 bytes.

max_packet_size_high_speed Sets the Bulk endpoint's max

packet size when operating at

High Speed. The valid Bulk

endpoint max packet sizes are

as follows:

8, 16, 32, 64 and 512 bytes.

p_bulk_out_endpoint_params Pointer to a CLD_Bulk_Endpoint_Params structure that describes

how the Bulk Out endpoint should be configured. Refer to the

p_bulk_in_endpoint_params description for information about the

CLD_Bulk_Endpoint_Params structure.

fp_bulk_out_data_received Pointer to the function that is called when the Bulk OUT endpoint

receives data. This function takes a pointer to the

CLD_USB_Transfer_Params structure ('p_transfer_data') as a

parameter.

The following CLD_USB_Transfer_Params structure elements are

used to processed a Bulk OUT transfer:

Structure Element Description

num_bytes The number of bytes to

transfer to the p_data_buffer

before calling the

12

usb_out_transfer_complete

callback function.

When the

bulk_out_data_received

function is called num_bytes

is set the number of bytes in

the current Bulk OUT packet.

If the Bulk OUT total transfer

size is known num_bytes can

be set to the transfer size, and

the CLD BF70x Bulk Library

will complete the entire bulk

transfer without calling

bulk_out_data_received again.

If num_bytes isn't modified

the bulk_out_data_received

function will be called for

each Bulk OUT packet.

p_data_buffer Pointer to the data buffer to

store the received Bulk OUT

data. The size of the buffer

should be greater than or

equal to the value in

num_bytes.

fp_usb_out_transfer_compelete Function called when

num_bytes of data has been

transferred to the

p_data_buffer memory.

fp_transfer_aborted_callback Function called if there is a

problem transferring the

requested Bulk OUT data.

transfer_timeout_ms Bulk OUT transfer timeout in

milliseconds. If the Bulk out

transfer takes longer then this

timeout the transfer is aborted

and the

transfer_aborted_callback is

called.

Setting the timeout to 0

disables the timeout

The fp_bulk_out_data_received function returns the

CLD_USB_Transfer_Request_Return_Type, which has the

following values:

Return Value Description
CLD_USB_TRANSFER_ACCEPT Notifies the CLD BF70x Bulk

Library that the Bulk OUT

data should be accepted using

the p_transfer_data values.

13

CLD_USB_TRANSFER_PAUSE Requests that the CLD BF70x

Bulk Library pause the current

transfer. This causes the Bulk

OUT endpoint to be nak'ed

until the transfer is resumed by

calling

cld_bf70x_bulk_lib_resume_

paused_bulk_out_transfer.
CLD_USB_TRANSFER_DISCARD Requests that the CLD BF70x

Bulk Library discard the

number f bytes specified in

p_transfer_params->

num_bytes. In this case the

library accepts the Bulk OUT

data from the USB Host but

discards the data. This is

similar to the concepts of

frame dropping in audio/video

applications.
CLD_USB_TRANSFER_STALL This notifies the CLD BF70x

Bulk Library that there is an

error and the Bulk OUT

endpoint should be stalled.

usb_bus_max_power USB Configuration Descriptor bMaxPower value (0 = self-

powered). Refer to the USB 2.0 protocol section 9.6.3.

device_descriptor_bcd_device USB Device Descriptor bcdDevice value.

Refer to the USB 2.0 protocol section 9.6.1.

p_usb_string_manufacturer Pointer to the null-terminated string. This string is used by the CLD

BF70x Bulk Library to generate the Manufacturer USB String

Descriptor. If the Manufacturer String Descriptor is not used set

p_usb_string_manufacturer to NULL.

p_usb_string_product Pointer to the null-terminated string. This string is used by the CLD

BF70x Bulk Library to generate the Product USB String Descriptor.

If the Product String Descriptor is not used set

p_usb_string_product to NULL.

p_usb_string_serial_number Pointer to the null-terminated string. This string is used by the CLD

BF70x Bulk Library to generate the Serial Number USB String

Descriptor. If the Serial Number String Descriptor is not used set

p_usb_string_serial_number to NULL.

p_usb_string_configuration Pointer to the null-terminated string. This string is used by the CLD

BF70x Bulk Library to generate the Configuration USB String

Descriptor. If the Configuration String Descriptor is not used set

p_usb_string_configuration to NULL.

p_usb_string_interface Pointer to the null-terminated string. This string is used by the CLD

BF70x Bulk Library to generate the Interface 0 USB String

Descriptor. If the Product String Descriptor is not used set

p_usb_string_interface to NULL.

usb_string_language_id 16-bit USB String Descriptor Language ID Code as defined in the

USB Language Identifiers (LANGIDs) document

(www.usb.org/developers/docs/USB_LANGIDs.pdf).

14

0x0409 = English (United States)

fp_cld_usb_event_callback Function that is called when one of the following USB events

occurs. This function has a single CLD_USB_Event parameter.

Note: This callback can be called from the USB interrupt or

mainline context depending on which USB event was detected. The

CLD_USB_Event values in the table below are highlighted to show

the context the callback is called for each event.

The CLD_USB_Event has the following values:

Return Value Description
CLD_USB_CABLE_CONNECTED

USB Cable Connected.

CLD_USB_CABLE_DISCONNECTED USB Cable

Disconnected
CLD_USB_ENUMERATED_CONFIGURED_

HS
USB device enumerated

at High-Speed (USB

Configuration set to a

non-zero value)
CLD_USB_ENUMERATED_CONFIGURED_

FS
USB device enumerated

at Full-Speed (USB

Configuration set to a

non-zero value)
CLD_USB_UN_CONFIGURED USB Configuration set

to 0
CLD_USB_BUS_RESET USB Bus reset received
CLD_USB_BUS_SUSPEND USB Suspend detected
CLD_USB_BUS_RESUME USB Resume detected

Note: Set to CLD_NULL if not required by application

fp_cld_lib_status Pointer to the function that is called when the CLD library has a

status to report. This function has the following parameters:

Parameter Description

status_code 16-bit status code. If the

most significant bit is a '1' the

status being reported is an

Error.

p_additional_data Pointer to additional data

included with the status.

additional_data_size The number of bytes in the

specified additional data.

If the User plans on processing outside of the fp_cld_lib_status

function they will need to copy the additional data to a User buffer.

cld_bf70x_bulk_lib_main

void cld_bf70x_bulk_lib_main (void)

15

CLD BF70x Bulk Library mainline function

Arguments

None

Return Value

None.

Details

The cld_bf70x_bulk_lib_main function is the CLD BF70x Bulk Library mainline function that must be

called in every iteration of the main program loop in order for the library to function properly.

cld_bf70x_bulk_lib_transmit_bulk_in_data

CLD_USB_Data_Transmit_Return_Type cld_bf70x_bulk_lib_transmit_bulk_in_data

 (CLD_USB_Transfer_Params * p_transfer_data)

CLD BF70x Bulk Library function used to send data over the Bulk IN endpoint.

Arguments

p_transfer_data Pointer to a CLD_USB_Transfer_Params structure

used to describe the data being transmitted.

Return Value

This function returns the CLD_USB_Data_Transmit_Return_Type type which reports if the Bulk IN

transmission request was started. The CLD_USB_Data_Transmit_Return_Type type has the following

values:
CLD_USB_TRANSMIT_SUCCESSFUL The library has started the requested Bulk IN

transfer.
CLD_USB_TRANSMIT_FAILED The library failed to start the requested Bulk IN

transfer. This will happen if the Bulk IN endpoint is

busy, or if the p_transfer_data-> data_buffer is set

to NULL

Details

The cld_bf70x_bulk_lib_transmit_bulk_in_data function transmits the data specified by the

p_transfer_data parameter to the USB Host using the Device's Bulk IN endpoint.

The CLD_USB_Transfer_Params structure is described below.

typedef struct

{

 unsigned long num_bytes;

 unsigned char * p_data_buffer;

 union

 {

 CLD_USB_Data_Received_Return_Type (*fp_usb_out_transfer_complete)(void);

 void (*fp_usb_in_transfer_complete) (void);

16

 }callback;

 void (*fp_transfer_aborted_callback) (void);

 CLD_Time transfer_timeout_ms;

} CLD_USB_Transfer_Params;

A description of the CLD_USB_Transfer_Params structure elements is included below:

Structure Element Description

num_bytes The number of bytes to transfer to the USB Host. Once the

specified number of bytes have been transmitted the

usb_in_transfer_complete callback function will be called.

p_data_buffer Pointer to the data to be sent to the USB Host. This buffer must

include the number of bytes specified by num_bytes.

fp_usb_out_transfer_complete Not Used for Bulk IN transfers

fp_usb_in_transfer_complete Function called when the specified data has been transmitted to the

USB host. This function pointer can be set to NULL if the User

application doesn't want to be notified when the data has been

transferred.

fp_transfer_aborted_callback Function called if there is a problem transmitting the data to the

USB Host. This function can be set to NULL if the User

application doesn't want to be notified if a problem occurs.

transfer_timeout_ms Bulk OUT transfer timeout in milliseconds. If the Bulk out transfer

takes longer then this timeout the transfer is aborted and the

fp_transfer_aborted_callback is called.

Setting the timeout to 0 disables the timeout

cld_bf70x_bulk_lib_resume_paused_bulk_out_transfer

void cld_bf70x_bulk_lib_resume_paused_bulk_out_transfer (void)

CLD BF70x Bulk Library function used to resume a paused Bulk OUT transfer.

Arguments

None

Return Value

None.

Details

The cld_bf70x_bulk_lib_resume_paused_bulk_out_transfer function is used to resume a Bulk OUT

transfer that was paused by the fp_bulk_out_data_received function returning

CLD_USB_TRANSFER_PAUSE. When called the

cld_bf70x_bulk_lib_resume_paused_bulk_out_transfer function will call the User application's

fp_bulk_out_data_received function passing the CLD_USB_Transfer_Params of the original

paused transfer. The fp_bulk_out_data_received function can then chose to accept, discard, or stall

the bulk out request.

17

18

cld_ lib_usb_connect

void cld_lib_usb_connect (void)

CLD BF70x Bulk Library function used to connect to the USB Host.

Arguments

None

Return Value

None.

Details

The cld_lib_usb_connect function is called after the CLD BF70x Bulk Library has been initialized to

connect the USB device to the Host.

cld_ lib_usb_disconnect

void cld_lib_usb_disconnect (void)

CLD BF70x Bulk Library function used to disconnect from the USB Host.

Arguments

None

Return Value

None.

Details

The cld_lib_usb_disconnect function is called after the CLD BF70x Bulk Library has been initialized to

disconnect the USB device to the Host.

19

cld_time_125us_tick

void cld_time_125us_tick (void)

CLD library timer function that should be called once per 125 microseconds.

Arguments

None

Return Value

None.

Details

This function should be called once every 125 microseconds in order to the CLD to processed periodic

events.

cld_usb_isr_callback

void cld_usb_isr_callback (void)

CLD library USB interrupt service routines

Arguments

None

Return Value

None.

Details

These USB ISR functions should be called from the corresponding USB Port Interrupt Service Routine as

shown in the CLD provided example projects.

20

cld_console_tx_isr_callback

void cld_console_tx_isr_callback (void)

CLD library console UART transmit interrupt service routines

Arguments

None

Return Value

None.

Details

These transmit ISR functions should be called from the corresponding UART transmit Interrupt Service

Routine as shown in the CLD provided example projects.

cld_console_rx_isr_callback

void cld_console_rx_isr_callback (void)

CLD library console UART receive interrupt service routines

Arguments

None

Return Value

None.

Details

These receive ISR functions should be called from the corresponding UART receive Interrupt Service

Routine as shown in the CLD provided example projects

21

cld_time_get

CLD_Time cld_time_get(void)

CLD BF70x Bulk Library function used to get the current CLD time.

Arguments

None

Return Value

The current CLD library time.

Details

The cld_time_get function is used in conjunction with the cld_time_passed_ms function to measure how

much time has passed between the cld_time_get and the cld_time_passed_ms function calls.

cld_time_passed_ms

CLD_Time cld_time_passed_ms(CLD_Time time)

CLD BF70x Bulk Library function used to measure the amount of time that has passed.

Arguments

time A CLD_Time value returned by a cld_time_get

function call.

Return Value

The number of milliseconds that have passed since the cld_time_get function call that returned the

CLD_Time value passed to the cld_time_passed_ms function.

Details

The cld_time_passed_ms function is used in conjunction with the cld_time_get function to measure how

much time has passed between the cld_time_get and the cld_time_passed_ms function calls.

22

cld_time_get_125us

CLD_Time cld_time_get_125us(void)

CLD library function used to get the current CLD time in 125 microsecond increments.

Arguments

None

Return Value

The current CLD library time.

Details

The cld_time_get_125us function is used in conjunction with the cld_time_passed_125us function to

measure how much time has passed between the cld_time_get_125us and the cld_time_passed_125us

function calls in 125 microsecond increments.

cld_time_passed_125us

CLD_Time cld_time_passed_125us(CLD_Time time)

CLD library function used to measure the amount of time that has passed in 125 microsecond increments.

Arguments

time A CLD_Time value returned by a

cld_time_get_125us function call.

Return Value

The number of 125microsecond increments that have passed since the cld_time_get_125us function call

that returned the CLD_Time value passed to the cld_time_passed_125us function.

Details

The cld_time_passed_125us function is used in conjunction with the cld_time_get_125us function to

measure how much time has passed between the cld_time_get_125us and the cld_time_passed_125us

function calls in 125 microsecond increments.

23

cld_console

CLD_RV cld_console(CLD_CONSOLE_COLOR foreground_color, CLD_CONSOLE_COLOR

 background_color, const char *fmt, ...)

CLD Library function that outputs a User defined message using the UART specified in the

CLD_BF70x_Bulk_Lib_Init_Params structure.

Arguments

foreground_color The CLD_CONSOLE_COLOR used for the

console text.

CLD_CONSOLE_BLACK

CLD_CONSOLE_RED

CLD_CONSOLE_GREEN

CLD_CONSOLE_YELLOW

CLD_CONSOLE_BLUE

CLD_CONSOLE_PURPLE

CLD_CONSOLE_CYAN

CLD_CONSOLE_WHITE

background_color The CLD_CONSOLE_COLOR used for the

console background.

CLD_CONSOLE_BLACK

CLD_CONSOLE_RED

CLD_CONSOLE_GREEN

CLD_CONSOLE_YELLOW

CLD_CONSOLE_BLUE

CLD_CONSOLE_PURPLE

CLD_CONSOLE_CYAN

CLD_CONSOLE_WHITE

The foreground and background colors allow the

User to generate various color combinations like

the ones shown below:

fmt The User defined ASCII message that uses the

same format specifies as the printf function.
... Optional list of additional arguments

24

Return Value

This function returns whether or not the specified message has been added to the cld_console transmit

buffer.
CLD_SUCCESS The message was added successfully.
CLD_FAIL The message was not added, so the message will

not be transmitted. This will occur if the CLD

Console is disabled, or if the message will not fit

into the transmit buffer.

Details

cld_console is similar in format to printf, and also natively supports setting a foreground and background

color.

The following will output 'The quick brown fox' on a black background with green text:

 cld_console(CLD_CONSOLE_GREEN, CLD_CONSOLE_BLACK, "The quick brown %s\n\r", "fox");

cld_lib_status_decode

char * cld_lib_status_decode (unsigned short status_cod,

 void * p_additional_data,

 unsigned short additional_data_size)

CLD Library function that returns a NULL terminated string describing the status passed to the function.

Arguments

status_code 16-bit status code returned by the CLD library.

Note: If the most significant bit is a '1' the status is

an error.
p_additional_data Pointer to the additional data returned by the CLD

library (if any).
additional_data_size Size of the additional data returned by the CLD

library.

Return Value

This function returns a decoded Null terminated ASCII string.

Details

The cld_lib_status_decode function can be used to generate an ASCII string which describes the CLD

library status passed to the function. The resulting string can be used by the User to determine the

meaning of the status codes returned by the CLD library.

25

Using the ADSP-BF707 Ez-Board

Connections:

Note about using UART0 and the FTDI USB to Serial Converter

On the ADSP-BF707 Ez-Board the Blackfin's UART0 serial port is connected to a FTDI FT232RQ USB-

to-Serial converter. By default the UART 0 signals are connected to the FTDI chip. However, the demo

program shipped on the Ez-Board disables the UART0 to FTDI connection. If the FTDI converter is used

for the CLD BF70x Bulk Library console change the boot selection switch (located next to the power

connector) so the demo program doesn't boot. Once this is done the FTDI USB-to-Serial converter can be

used with the CLD BF70x Bulk Library console connected to UART0.

26

Adding the CLD BF70x Bulk Library to an Existing CrossCore Embedded

Studio Project

In order to include the CLD BF70x Bulk Library in a CrossCore Embedded Studio (CCES) project you

must configure the project linker settings so it can locate the library. The following steps outline how this

is done.

1. Copy the cld_bf70x_bulk_lib.h and cld_bf70x_bulk_lib.dlb files to the project's src directory.

2. Open the project in CrossCore Embedded Studio.

3. Right click the project in the 'C/C++ Projects' window and select Properties.

If you cannot find the 'C/C++ Projects" window make sure C/C++ Perspective is active. If the

C/C++ Perspective is active and you still cannot locate the 'C/C++ Projects' window select

Window → Show View → C/C++ Projects.

4. You should now see a project properties window similar to the one shown below.

Navigate to the C/C++ Build → Settings page and select the CrossCore Blackfin Linker General

page. The CLD BF70x Bulk Library needs to be included in the project's 'Additional libraries

and object files' as shown in the diagram below (circled in blue). This lets the linker know where

the cld_bf70x_bulk_lib.dlb file is located.

27

5. The 'Additional libraries and object files' setting needs to be set for all configurations (Debug,

Release, etc). This can be done individually for each configuration, or all at once by selecting the

[All Configurations] option as shown in the previous figure (circled in orange).

28

Using ADI hostapp.exe

Analog Devices includes the hostapp application as part of the CrossCore Embedded Studio (CCES), and

is located in the following directory (assuming the CCES default installation directory was used):

C:\Analog Devices\CrossCore Embedded Studio x.x.x\Blackfin\Examples\demo\hostapp

To launch hostapp navigate to the above directory using the Windows DOS console (type cmd.exe in the

Windows Run dialog box). Once there, type hostapp.exe and press Enter to see a list of supported

command switches as shown in the screen show below.

Note: The CLD Bulk Loopback Example supports all of the above command switches except for the '-u'

switch.

Before going further connect the ADSP-BF707 EZ-Board running the CLD Bulk Loopback Example and

try running 'hostapp -a' to display the detected USB devices that support hostapp. If everything is

working correctly you should see the following:

29

However, if hostapp.exe outputs "Total 0 Blackfin USB Device found" it means that hostapp was not able

to detect a hostapp compatible device. If this occurs first check to make sure the CLD Bulk Loop Back

Example is running on the ADSP-BF707 EZ-Board, and that you have a USB connected between the

USB0 port and one of you PC USB ports. If this doesn't correct the problem the next step is to install the

ADI hostapp USB driver as shown in the 'ADI hostapp USB Windows Driver Installation' section of this

document.

Once the USB driver has been installed you should be ready to run the remaining hostapp command

switches (type hostapp.exe or hostapp -h to see the list of supported command switches).

ADI hostapp Windows USB Driver Installation

To install the ADI hostapp Windows USB driver open the Windows Device Manager by running

"devmgmt.msc" from the Windows run dialog box. You should see a Device Manager windows similar

to the one below.

30

Notice the 'BF707 Bulk Loopback Device' circled in blue. This is the BF707 running the CLD Bulk

Loopback Example that is missing the ADI hostapp USB driver. To install the USB driver right click the

'BF707 Bulk Loopback Device' device and select Update Driver Software. You should now see the

Update Driver Software dialog box shown below.

31

Click 'Browse my computer for driver software'

You should now see the following dialog box:

Click 'Browse...' and navigate to the directory containing the ADI hostapp USB driver shown below and

click ok.

C:\Analog Devices\CrossCore Embedded Studio x.x.x\Setup\Demo_Driver

Click 'Next'

32

After clicking next you might see a Windows Security dialog box like the one shown below. If you do,

click 'Install' to continue the driver installation.

You should now see the following dialog box showing that the ADI USB driver was installed

successfully. Click 'Close' to exit the Update Driver Software wizard.

You should now be able to run hostapp-a and see that hostapp is now successfully detecting the BF707

running the CLD Bulk Loopback Example project.

33

User Firmware Code Snippets

The following code snippets are not complete, and are meant to be a starting point for the User firmware.

For a functional User firmware example that uses the CLD BF70x Bulk Library please refer to the

CLD_Bulk_loopback_Ex_v2_0 project included with the CLD BF70x Bulk Library. The

CLD_Bulk_loopback_Ex_v2_0 project implements a Bulk IN/Bulk OUT device used by the Analog

Devices hostapp.exe included with the Analog Devices CrossCore Embedded Studio.

main.c

void main(void)

{

 Main_States main_state = MAIN_STATE_SYSTEM_INIT;

 while (1)

 {

 switch (main_state)

 {

 case MAIN_STATE_SYSTEM_INIT:

 /* Enable and Configure the SEC. */

 /* sec_gctl - unlock the global lock */

 pADI_SEC0->GCTL &= ~BITM_SEC_GCTL_LOCK;

 /* sec_gctl - enable the SEC in */

 pADI_SEC0->GCTL |= BITM_SEC_GCTL_EN;

 /* sec_cctl[n] - unlock */

 pADI_SEC0->CB.CCTL &= ~BITM_SEC_CCTL_LOCK;

 /* sec_cctl[n] - reset sci to default */

 pADI_SEC0->CB.CCTL |= BITM_SEC_CCTL_RESET;

 /* sec_cctl[n] - enable interrupt to be sent to core */

 pADI_SEC0->CB.CCTL = BITM_SEC_CCTL_EN;

 pADI_PORTA->DIR_SET = (3 << 0);

 pADI_PORTB->DIR_SET = (1 << 1);

 main_state = MAIN_STATE_USER_INIT;

 break;

 case MAIN_STATE_USER_INIT:

 rv = user_bulk_init();

 if (rv == USER_BULK_INIT_SUCCESS)

 {

 main_state = MAIN_STATE_RUN;

 }

 else if (rv == USER_BULK_INIT_FAILED)

 {

 main_state = MAIN_STATE_ERROR;

 }

 break;

 case MAIN_STATE_RUN:

 user_bulk_main();

 break;

 case MAIN_STATE_ERROR:

 break;

 }

 }

}

34

user_bulk.c

/* Bulk IN endpoint parameters */

static CLD_Bulk_Endpoint_Params user_bulk_in_endpoint_params =

{

 .endpoint_number = 1,

 .max_packet_size_full_speed = 64,

 .max_packet_size_high_speed = 512,

};

/* Bulk OUT endpoint parameters */

static CLD_Bulk_Endpoint_Params user_bulk_out_endpoint_params =

{

 .endpoint_number = 1,

 .max_packet_size_full_speed = 64,

 .max_packet_size_high_speed = 512,

};

/* cld_bf70x_bulk_lib library initialization data. */

static CLD_BF70x_Bulk_Lib_Init_Params user_bulk_init_params =

{

 .uart_num = CLD_UART_0,

 .uart_baud = 115200,

 .sclk0 = 100000000u,

 .fp_console_rx_byte = user_bulk_console_rx_byte,

 .vendor_id = 0x064b,

 .product_id = 0x7823

 .p_bulk_in_endpoint_params = &user_bulk_in_endpoint_params,

 .p_bulk_out_endpoint_params = &user_bulk_out_endpoint_params,

 .fp_bulk_out_data_received = user_bulk_bulk_out_data_received,

 .usb_bus_max_power = 0,

 .device_descriptor_bcdDevice = 0x0100

 /* USB string descriptors - Set to CLD_NULL if not required */

 .p_usb_string_manufacturer = "Analog Devices Inc",

 .p_usb_string_product = "BF707 Bulk Loopback Device",

 .p_usb_string_serial_number = CLD_NULL,

 .p_usb_string_configuration = CLD_NULL,

 .p_usb_string_interface = "BF707 Bulk Loopback Demo",

 .usb_string_language_id = 0x0409, /* English (US) language ID */

 .fp_cld_usb_event_callback = user_bulk_usb_event,

 .fp_cld_lib_status = user_audio_status,

};

User_Bulk_Init_Return_Code user_bulk_init (void)

{

 static unsigned char user_init_state = 0;

 CLD_RV cld_rv = CLD_ONGOING;

 User_Bulk_Init_Return_Code init_return_code = USER_BULK_INIT_ONGOING;

 switch (user_init_state)

 {

 case 0:

 /* TODO: add any custom User firmware initialization */

35

 user_init_state++;

 break;

 case 1:

 /* Initalize the CLD BF70x Bulk Library */

 cld_rv = cld_bf70x_bulk_lib_init(&user_bulk_init_params);

 if (cld_rv == CLD_SUCCESS)

 {

 /* TODO: Configure a timer to generate an interrupt every 125

 microseconds, and call cld_time_125us_tick from interrupt. */

 /* TODO: Install USB and optionally the Console UART ISRs. */

 /* Connect to the USB Host */

 cld_lib_usb_connect();

 init_return_code = USER_BULK_INIT_SUCCESS;

 }

 else if (cld_rv == CLD_FAIL)

 {

 init_return_code = USER_BULK_INIT_FAILED;

 }

 else

 {

 init_return_code = USER_BULK_INIT_ONGOING;

 }

 }

 return init_return_code;

}

void user_bulk_main (void)

{

 cld_bf70x_bulk_lib_main();

}

/* Function called when a bulk out packet is received */

static CLD_USB_Transfer_Request_Return_Type

 user_bulk_bulk_out_data_received(CLD_USB_Transfer_Params * p_transfer_data)

{

 p_transfer_data->num_bytes = /* TODO: Set number of Bulk OUT bytes to transfer */

 p_transfer_data->p_data_buffer = /* TODO: address to store Bulk OUT data */

 /* User Bulk transfer complete callback function. */

 p_transfer_data->fp_callback.usb_out_transfer_complete = user_bulk_out_transfer_done;

 p_transfer_params->fp_transfer_aborted_callback = /* TODO: Set to User callback

 function or CLD_NULL */;

 p_transfer_params->transfer_timeout_ms = /* TODO: Set to desired timeout */;

 /* TODO: Return how the Bulk OUT transfer should be handled (Accept, Pause,

 Discard, or Stall */

}

/* The function below is an example if the bulk out transfer done callback specified

 in the CLD_USB_Transfer_Params structure. */

static CLD_USB_Data_Received_Return_Type user_bulk_out_transfer_done (void)

{

 /* TODO: Process the received Bulk OUT transfer and return if the received data is

 good(CLD_USB_DATA_GOOD) or if there is an error(CLD_USB_DATA_BAD_STALL)*/

}

static void user_bulk_console_rx_byte (unsigned char byte)

{

36

 /* TODO: Add any User firmware to process data received by the CLD Console UART.*/

}

static void user_bulk_usb_event (CLD_USB_Event event)

{

 switch (event)

 {

 case CLD_USB_CABLE_CONNECTED:

 /* TODO: Add any User firmware processed when a USB cable is connected. */

 break;

 case CLD_USB_CABLE_DISCONNECTED:

 /* TODO: Add any User firmware processed when a USB cable is

 disconnected.*/

 break;

 case CLD_USB_ENUMERATED_CONFIGURED_HS:

 case CLD_USB_ENUMERATED_CONFIGURED_FS:

 /* TODO: Add any User firmware processed when a Device has been

 enumerated.*/

 break;

 case CLD_USB_UN_CONFIGURED:

 /* TODO: Add any User firmware processed when a Device USB Configuration

 is set to 0.*/

 break;

 case CLD_USB_BUS_RESET:

 /* TODO: Add any User firmware processed when a USB Bus Reset occurs. */

 break;

 }

}

/* The following function will transmit the specified memory using

 the Bulk IN endpoint. */

static user_bulk_transmit_bulk_in_data (void)

{

 static CLD_USB_Transfer_Params transfer_params;

 transfer_params.num_bytes = /* TODO: Set number of Bulk IN bytes */

 transfer_params.p_data_buffer = /* TODO: address Bulk IN data */

 transfer_params.callback.fp_usb_in_transfer_complete = /* TODO: Set to User

 callback function or

 CLD_NULL */;

 transfer_params.callback.fp_transfer_aborted_callback = /* TODO: Set to User

 callback function or

 CLD_NULL */;

 p_transfer_params->transfer_timeout_ms = /* TODO: Set to desired timeout */;

 if (cld_bf70x_bulk_lib_transmit_bulk_in_data(&transfer_params) ==

 CLD_USB_TRANSMIT_SUCCESSFUL)

 {

 /* Bulk IN transfer initiated successfully */

 }

 else /* Bulk IN transfer was unsuccessful */

 {

 }

}

static void user_cld_lib_status (unsigned short status_code, void * p_additional_data,

 unsigned short additional_data_size)

{

 /* TODO: Process the library status if needed. The status can also be decoded to

 a USB readable string using cld_lib_status_decode as shown below: */

37

 char * p_str = cld_lib_status_decode(status_code, p_additional_data,

 additional_data_size);

}

	Disclaimer
	Introduction
	USB Background
	CLD BF70x Bulk Library USB Enumeration Flow Chart
	CLD BF70x Bulk Library Bulk OUT Flow Chart
	CLD BF70x Bulk Library Bulk IN Flow Chart

	Dependencies
	Memory Footprint
	CLD BF70x Bulk Library Scope and Intended Use
	CLD Bulk Loopback Example v2.0 Description
	CLD BF70x Bulk Library API
	cld_bf70x_bulk_lib_init
	Arguments
	Return Value
	Details

	cld_bf70x_bulk_lib_main
	Arguments
	Return Value
	Details

	cld_bf70x_bulk_lib_transmit_bulk_in_data
	Arguments
	Return Value
	Details

	cld_bf70x_bulk_lib_resume_paused_bulk_out_transfer
	Arguments
	Return Value
	Details

	cld_ lib_usb_connect
	Arguments
	Return Value
	Details

	cld_ lib_usb_disconnect
	Arguments
	Return Value
	Details

	cld_time_125us_tick
	Arguments
	Return Value
	Details

	cld_usb_isr_callback
	Arguments
	Return Value
	Details

	cld_console_tx_isr_callback
	Arguments
	Return Value
	Details

	cld_console_rx_isr_callback
	Arguments
	Return Value
	Details

	cld_time_get
	Arguments
	Return Value
	Details

	cld_time_passed_ms
	Arguments
	Return Value
	Details

	cld_time_get_125us
	Arguments
	Return Value
	Details

	cld_time_passed_125us
	Arguments
	Return Value
	Details

	cld_console
	Arguments
	Return Value
	Details

	cld_lib_status_decode
	Arguments
	Return Value
	Details

	Using the ADSP-BF707 Ez-Board
	Connections:
	Note about using UART0 and the FTDI USB to Serial Converter

	Adding the CLD BF70x Bulk Library to an Existing CrossCore Embedded Studio Project
	Using ADI hostapp.exe
	ADI hostapp Windows USB Driver Installation

	User Firmware Code Snippets
	main.c
	user_bulk.c

